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ABSTRACT

After a natural experiment is first used, other researchers often reuse the setting, exam-

ining different outcome variables. We use simulations based on real data to illustrate the

multiple hypothesis testing problem that arises when researchers reuse natural experi-

ments. We then provide guidance for future inference based on popular empirical settings

including difference-in-differences regressions, instrumental variables regressions, and re-

gression discontinuity designs. When we apply our guidance to two extensively studied

natural experiments, business combination laws and the Regulation SHO pilot, we find
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that many results that were statistically significant using single hypothesis testing do

not survive corrections for multiple hypothesis testing.

JEL classification: G1, G10

Keywords : False Positive, Multiple Hypothesis Testing, Natural Experiments
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Over the last three decades, the “credibility revolution” has fundamentally altered

empirical research in the field of economics, driven by a new-found emphasis on empirical

research design. By exploiting conditions that resemble random assignment, researchers

can better estimate the causal effect of one variable on another. Indeed, the use of such

“natural experiments” has increased dramatically in recent years. Bowen, Frésard, and

Taillard (2016) estimate that 39 percent of empirical corporate finance articles between

2010 and 2012 use natural experiments, compared to just 8 percent in the 1970s.1

While the increased reliance on natural experiments has been praised for bolster-

ing the credibility of empirical research in the social sciences (e.g., Angrist & Pischke,

2010), it is not a panacea. Credible natural experiments that can be used to answer

research questions are difficult to find. As a result, after an experiment is first used,

other researchers often reuse the setting to examine the effect of the treatment on other

outcome variables. Examples of natural experiments that have been reused include state-

level changes in rules or laws (e.g., minimum wages, tax rates, corporate laws, contract

laws, and regulations); discontinuities in membership to a particular group (e.g., Russell

3000 index membership, credit ratings, and FICO scores); and randomized controlled

trials (e.g., the Regulation SHO and U.S. Tick Size Pilot programs).2

While researchers who reuse a setting may develop testable hypotheses independently

of one another, whenever their research question can be viewed as part of the broader

question “What was the effect of treatment in this setting?” then their tests can be

1Bowen et al. (2016) classify methods based on the following categories: instrumental vari-
ables, difference-in-differences regressions, selection models, regression discontinuity designs,
and randomized experiments.

2See Meyer (1995), Rozenzwieg and Wolpin (2000), Angrist and Kreuger (2001), and Fuchs-
Schündeln and Hassan (2017) for surveys of natural experiments in economics.
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viewed as part of the same “family.” This leads to a multiple testing problem.3 Tests

are generally considered a part of the same family when they support the same research

question and use the same data.4 In such cases, reusing a given setting without ac-

counting for the other outcomes that have already been examined leads to p-values that

cannot be interpreted in the usual manner.

We start by examining the multiple testing problem using simulations. While it

is not possible to examine the rate of false positives using real data, the simulations

based on commonly used data in finance allow us to quantify the potential scope of the

problem under conditions that resemble frequently used natural experiments. While the

commonly used p-value cutoff of α = 0.05 should indicate there is a 5% probability of

observing results at least as extreme as the observed results if the null hypothesis of no

effect is true (i.e., a Type I error), we show that the actual probability is often much

higher when a natural experiment is reused.5 In fact, for commonly reused settings

and estimation techniques, our simulations suggest that when the number of variables

examined is large relative to the number of true effects, more than 50% of statistically

significant findings may be false positives.

We then examine the properties of several different multiple testing correction meth-

ods using simulations. We also use simulations to develop t-statistic cutoffs that re-

searchers can use to improve inference when reusing a setting. Finally, we apply our

3Whether these tests are being conducted by different researchers at different times should
have no bearing on the multiple testing issue. If it did, then one researcher could address
the issue by simply asking different people to push “enter” on their keyboard for them or by
waiting a specified length of time before performing the next test (Thompson, Wright, Bissett,
& Poldrack, 2020).

4For more discussion on families of tests, see Thompson et al. (2020) and references therein.
5Assuming independence of tests and that all of the null hypotheses are true, the probability

of making at least one Type I error is 1 − (1 − α)S , where S is the number of hypotheses
examined.
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recommendations to two extensively studied experiments: the staggered enactment of

state-specific business combination laws and the Regulation SHO pilot. These two set-

tings have been used to examine several hundred dependent variables. While we find

that some of the results in these literatures do survive after applying multiple testing

corrections, we find that many more of them do not survive. Moreover, the fraction of

results that are significant with single hypothesis testing but not with multiple testing

adjustments is consistent with our simulation results.

We use simulation evidence to demonstrate the consequences of reusing a natural

experiment without adjusting for multiple testing. As more and more researchers reuse

a setting, our simulation evidence shows it is likely to lead to a large number of Type

I errors. In fact, we show that when the number of variables examined is large relative

to the number of true effects, the reuse of natural experiments without correcting for

multiple testing may lead to more false positives being discovered than true positives.

For example, imagine researchers collectively examine 293 different variables from the

Center for Research in Security Prices (CRSP) and Compustat using the same staggered

state-level introduction of a law as a source of exogenous variation. Assuming the law

actually causes 10 true effects, our simulation evidence suggests the researchers will

document approximately 25 false discoveries in addition to the 10 true discoveries (see

Table 1).6

In light of these findings, we then examine the properties of several possible correc-

tion methods. To ensure that our findings apply to a wide range of research designs, we

examine several different multiple testing correction methods in four popular empirical

6While 293 variables may seem like a large number to examine, researchers have examined
over 400 different variables using Regulation SHO.
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settings: randomized control trials, staggered introductions, instrumental variables re-

gressions, and regression discontinuity designs. For each of these settings, we simulate

the exogenous independent variables, then sequentially examine the set of 293 outcome

variables from Compustat and CRSP. Because multiple testing corrections may be in-

fluenced by the dependence structure of the data, we use real data for the outcome

variables to ensure they are representative of data commonly used in academic studies.

For the number of tests under consideration, commonly studied outcome variables,

and corresponding dependence structures, the results are generally similar across mul-

tiple testing adjustment methods. Specifically, we examine a number of properties for

different correction methods, including the Type I error rate (number of false positives

divided by number of null effects), the Type II error rate (number of false negatives

divided by number of true effects) and Accuracy (the fraction of all tests with the cor-

rect result). We find that the Romano and Wolf (2005, 2016) correction method, which

controls the probability of making one or more false rejections across all hypotheses con-

sidered (the “family-wise error rate”), performs well across these different dimensions.

Other methods, such as the Benjamini and Yekutieli (2001) method, which controls the

expected value of the ratio of false rejections to total rejections across all hypotheses

considered (the “false discovery rate”), perform similarly.

Consequently, we use the Romano and Wolf (2005, 2016) method to calculate ad-

justed t-statistic critical values that can be used to make inferences when reusing a

setting.7 We construct adjusted critical values for four commonly used settings: ran-

domized control trials, staggered introductions, instrumental variables regressions, and

7Alternatively, we note that researchers can directly apply other methods such as Benjamini
and Yekutieli (2001), which generate similar results.
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regression discontinuity designs. We find that the adjusted critical values evolve at a

similar rate across these different empirical settings, as more dependent variables are

examined. In order to address the multiple testing problem, our results show that a

good heuristic is that a new hypothesis should have a t-statistic of at least 2.5 if there

are 5 prior findings and 3.0 if there are 20 prior findings using the same setting (see

Table A1 for details broken out by empirical setting and the number of prior findings).

Finally, to assess the potential importance of our findings, we apply our adjusted

critical values to two commonly studied and distinct real-world settings: business com-

bination laws and the Regulation SHO pilot – the business combination law setting is

a natural experiment involving the staggered enactment of state-level laws while the

Regulation SHO pilot is a randomized control trial conducted by the U.S. Securities and

Exchange Commission (SEC). We re-examine the empirical evidence on the effects of

treatment in these settings after adjusting for multiple testing.

When applying multiple hypothesis corrections to a growing family of tests, the way

outcomes are sequenced may affect inference. In other words, if a researcher exam-

ines outcome C, the multiple testing correction may yield different results depending on

whether outcomes A and B were already examined, versus just outcome A or just out-

come B. To account for this, the multiple testing literature has proposed different ways

to sequence existing outcomes; accordingly, we examine two different ways to sequence

outcomes when applying multiple testing corrections.

Following Harvey, Liu, and Zhu (2016), the first approach orders outcomes by the

date they were first reported: in other words, when we apply multiple testing correc-

tions to a given outcome, we consider the results that had been previously reported

sequenced by the order the results were first made public. This effectively raises the
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bar for statistical significance over time, as more outcomes are examined. The second

approach that we use is referred to as a “best foot forward policy” in the multiple testing

literature (Foster & Stine, 2008). In this approach, outcomes are ordered from high to

low based on the likelihood that they will be rejected given the experiment. While the

ordering of outcomes is ultimately subjective, this approach has been used in clinical

trials where the outcomes are ordered based on experimental design (e.g., intended ef-

fects of treatment are ordered first). Consequently, the intended treatment effects have

a lower statistical hurdle. As new potential treatment effects are proposed, we consider

the causal arguments that link them to the intended treatment effect and add related

outcomes to the family of tests at the appropriate level.

For both sequencing approaches, we find similar results. While some of the existing

results do survive correction for multiple testing, we find that many of them do not.

For example, for business combination laws the existing literature finds 73 out of the

114 outcomes examined to be statistically significant using single hypothesis testing

methods, but only 28 of these remain statistically significant after applying our Romano

and Wolf (2005, 2016) cutoffs when we sequence by the date of reporting. When we

sequence by the second approach, the number is similar – we find that 27 outcomes

remain statistically significant. We find similar results for outcomes examined using

the Regulation SHO setting. Overall, our findings highlight the potential importance of

considering multiple testing when making inferences.

Our analyses are largely focused on a statistical issue: p-values do not have their usual

interpretation when a large number of outcomes is examined without accounting for

multiple testing. However, p-values (and t-statistics) are only one part of inference. We

discuss a number of other best practices from the existing literature and how they relate
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to multiple testing to assist with inference when natural experiments are reused. For

example, researchers can provide corroborating evidence, state and provide supporting

evidence of causal channels, and reconcile their evidence with existing evidence derived

from the same setting.

Overall, our results contribute to a growing literature on multiple testing in eco-

nomics. Multiple testing corrections have been proposed in several other types of ex-

perimental settings where researchers develop pre-specified tests in support of the same

research question using the same data.8 List, Shaikh, and Xu (2019) propose using a

procedure based on Romano and Wolf (2010) to address the problem of multiple hy-

pothesis testing in field experiments. In their setting, a researcher has control over

the parameters of an experiment and tests multiple hypotheses at the same time. In

contrast, researchers reusing a given natural experiment develop a variety of different

testable hypotheses independently of one another. However these tests also effectively

investigate the same research question: What was the effect of the treatment? Simi-

larly, researchers in empirical asset pricing independently develop testable hypotheses

and effectively use the same data in order to examine whether expected returns are

predictable (Harvey & Liu, 2013, 2014; Harvey et al., 2016; Hou, Xue, & Zhang, 2018;

Engelberg, McLean, Pontiff, & Ringgenberg, 2019; Chordia, Goyal, & Saretto, 2020).

Multiple testing corrections have also been applied to papers estimating asset price vari-

8For example, Ludbrook (1998) examines multiple testing in biomedical research and states
“A family of hypotheses is all those actually tested on the results of a single experiment.”
Clinical trials generally involve multiple comparisons and tests for multiple end points. If
multiplicity is not accounted for, this situation can lead to the approval of ineffective treat-
ments (a Type I error) Bretz, Dmitrienko, and Tamhane (2010). Similarly, Thompson et al.
(2020) examine multiple testing in Psychology suggest that multiple testing corrections were
designed “for situations in which a researcher performs multiple statistical tests within the
same experiment.”
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ation (Liu, Patton, & Sheppard, 2015), and examining fund performance (Giglio, Liao,

& Xiu, 2019; Andrikogiannopoulou & Papakonstantinou, 2019). In contrast to these

existing studies, our paper is the first to examine the reuse of natural experiments. The

existing literature largely focuses on settings where the dependent variable is the same,

while the independent variables vary. Our paper instead focuses on settings where the

independent variable is the same and the dependent variable varies across tests. It is

therefore unclear whether the recommendations from the prior literature apply to the

reuse of natural experiments. Our paper fills this gap.

The rest of the paper proceeds as follows. Section 1 provides an overview of multiple

testing frameworks. Section 2 provides simulation evidence. Section 3 uses multiple

testing corrections to re-evaluate the existing results using business combination laws

and Regulation SHO. Section 4 discusses other potential solutions to the multiple testing

problem, notes caveats, and provides a review of other issues when reusing natural

experiments. Section 5 concludes.

1. Multiple Testing Corrections

In this section, we provide an overview of several multiple testing corrections and describe

our implementation of them. The different methods we examine are designed to control

different metrics: the family-wise error rate (FWER), the false discovery rate (FDR), or

the false discovery proportion (FDP). We briefly define these metrics and discuss each

correction method below. For more detailed descriptions, we refer the reader to the

papers cited below as well as Chordia et al. (2020).
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1.1. FWER

The FWER is defined as the probability of making one or more false rejections given

all hypotheses considered. These corrections allow us to maintain the standard p-value

cutoff of α = 0.05 for a family of tests. In other words, this implies there is still a

5% probability of observing results at least as extreme as the observed results if the

null hypothesis of no effect is true, even when many hypotheses are tested. However,

as the number of hypotheses under consideration becomes large, these methods become

relatively conservative since they control the probability of even one false positive.

The first correction that we examine is the Bonferroni (1936) method. In this cor-

rection, the critical p-value is equal to α
S , where S is the number of outcomes under

consideration. While the Bonferroni method is simple to apply, it treats all tests as

independent. More powerful FWER procedures account for the dependence structure

across hypotheses by re-sampling (White, 2000) and reject as many null hypotheses as

possible by using a step-down approach (Holm, 1979).9 The second correction that we

apply is the procedure developed in Romano and Wolf (2005, 2016) (RW) and described

in further detail by Clarke, Romano, and Wolf (2019). The RW correction combines

re-sampling with a step-down approach; as a consequence, this approach generally has

more power than other FWER methods.

1.2. FDR and FDP

In some applications, researchers may examine tens of thousands of hypotheses and

may be willing to tolerate more false positives than the standard α = 0.05 allows for;

9In the settings that we examine, many dependent variables are related due to common
firm and/or economic forces, so accounting for their dependence is important.
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the FDR and FDP were developed to address these situations.10 Rather than control

the probability of any false positives, the FDR controls the expected value of the ratio

of false rejections to total rejections across tests in the same family. We apply the

Benjamini and Yekutieli (2001) (BHY) correction which builds upon earlier work by

Benjamini and Hochberg (1995) by providing control of the FDR under more arbitrary

dependence structures. While the BHY correction is known to be relatively conservative

in controlling the FDR, BHY has been applied in several asset pricing settings including

Harvey et al. (2016) and Chordia et al. (2020). Following these papers, we control the

FDR at the 5% level in all of our applications.

Finally, we also examine FDP methods. These methods directly control the ratio of

false rejections to rejections for a single application. Romano and Wolf (2007) extend

the RW procedure described above for control of the FDP. In our setting, when we apply

Romano and Wolf (2007) FDP correction we find results that are qualitatively the same

as when we apply the RW method.11 Accordingly, we do not report results for FDP

corrections in our main tests.

Overall, both the RW and BHY methods generally have better proprieties than the

Bonferroni (1936) method. While the BHY method generally has more power than the

RW method as the number of tests becomes large, it provides control of a conceptually

different error rate. Put differently, the RW and BHY methods have distinct advan-

tages and disadvantages: the RW method has the advantage of leading to fewer false

discoveries, but it may miss more true discoveries than the BHY method, especially as

the number of tests becomes extremely large. We use our simulation analyses, discussed

10For example, genome association studies often examine the relation between a disease and
tens of thousands of genes that may be related to the disease.

11We control the FDP at the 5% proportion and level as in Chordia et al. (2020).
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in Section 2, to examine whether one of these methods performs better than the others

within the context of reusing natural experiments.

1.3. Bootstrap

When applying the RW and BHY methods, we use bootstrapping to account for the

dependence structure across hypotheses. Importantly, the results may depend on the

structure of the bootstrap – the bootstrap procedure should preserve the underlying

dependence structure in the original data. In our setting, we build bootstrap samples

of 1,000 replicants by randomly sampling firms with replacement from each sample. In

other words, to preserve the time series properties of the raw data, we draw all dates

for each firm.12 We then use the same bootstrap sample for all outcomes for a given

replicant (for example, once we draw a set of firms and dates using the bootstrap, we

examine all outcome variables using that same set of firm and dates).

2. Simulations

In this section, we use simulation evidence to examine the multiple testing problem

associated with reusing natural experiments. We also explore the properties of vari-

ous multiple testing corrections. We conduct simulations using three commonly used

methodologies: difference-in-differences regressions, instrumental variables (IV) regres-

sions, and regression discontinuity designs (RDD). Within the difference-in-differences

setting, we examine two research designs: (i) a randomized control trial (RCT) in which

12When we apply multiple testing corrections to staggered state-level introductions, we strat-
ify the draws by state of incorporation. After drawing firms, we generate a new firm index to
preserve the correct degrees of freedom when absorbing fixed effects.
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firms are randomly selected for treatment at one point in time and (ii) staggered in-

troductions of a state-level changes (Staggered Introductions), which exploit variation

across firms and across time.

For each of these four settings, we simulate the independent variable (the source

of exogenous variation) and then we examine dependent variables based on real data.

By using real data for the dependent variables, our simulations account for the actual

dependence structures encountered by researchers reusing natural experiments. Our

dependent variables are drawn from the set of variables in Compustat and CRSP, which

yields 293 variables (discussed in greater detail in Section 2.2, below). We start by

randomly drawing one of the 293 outcome variables, and then we continue to randomly

add one variable at a time to the family of tests.

2.1. Empirical Settings

2.1.1. Randomized Control Trial

To construct the simulated RCT sample, we randomly select a treatment year, then

collect 5 years of annual Compustat firm-level data before the treatment and 5 years

of data after the treatment. We randomly assign treated status to one third of the

firms, while the other firms serve as controls in each simulation. We then estimate panel

regressions of the form:

yi,t = αi + αt + β · Treati,t + ϵi,t, (1)

where yi,t is the outcome variable of interest for firm i in year t; Treati,t is an indicator

variable equal to one if the firm is in the treated firm group and the treatment has taken
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effect, and equal to zero otherwise. We include firm and year fixed effects and cluster

standard errors at the firm level.

2.1.2. Staggered Introductions

The sample consists of Compustat firm-level data with fiscal years ending from 1976

through 1995. To simulate the Staggered Introductions, we randomly assign the en-

actment years of a regulatory or legal change, without replacement, to the states of

incorporation in the sample, leaving Delaware untreated. We then estimate panel re-

gressions of the form:

yi,s,t = αi + αt + β · Treats,t + δ′Ls,t + ϵi,s,t, (2)

where yi,s,t is the outcome variable of interest for firm i in year t incorporated in state

s. Treats,t is an indicator variable which is equal to one if the change has occurred in

state s by year t and equal to zero otherwise. Following Spamann (2019), Ls,t includes

controls for the five antitakeover statutes from Karpoff and Wittry (2018).13 We include

firm and year fixed effects and cluster standard errors at the firm level.

2.1.3. Instrumental Variables Regression

To construct the simulated IV sample, we simulate an endogenous independent variable

(X) for the 1984 to 2004 sample period, then simulate the instrument (Z) so that it is

a function of the endogenous independent variable (such that we do not have a weak

13This setting mimics the business combination law literature and leads to an unbalanced
panel as the majority of firms are incorporated in Delaware. See Bertrand, Duflo, and Mul-
lainathan (2004) and Spamann (2019) for discussions about the resulting issues.
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instrument) plus a noise term. We then estimate two-stage least-squares regressions of

the form:

Xi,t = κi + κt + γ · Zi,t + ηi,t, (3)

yi,t = αi + αt + β · X̂i,t + ϵi,t, (4)

where yi,t is the outcome variable of interest for firm i in year t; Xi,t is the endogenous

independent variable, Zi,t is an instrumental variable, and X̂i,t is the fitted value from

the first-stage regression. We include firm and year fixed effects and cluster standard

errors at the firm level.

2.1.4. Regression Discontinuity Design

To construct the simulated RDD sample, we use the 1984 to 2004 period. Each year

we randomly simulate a forcing variable and threshold, and construct a treatment vari-

able (Treati,t) that takes the value one above the threshold. We then estimate panel

regressions of the form:

yi,t = αi + αt + β · Treati,t + λ ·Xi,t · Treati,t + ϵi,t, (5)

where yi,t is the outcome variable of interest for firm i in year t, Treati,t is an indicator

variable, and Xi,t is a linear control function that is fitted separately above and below

the threshold. We include firm and year fixed effects, use a bandwidth of 500 firms on

either side of each yearly simulated threshold, and cluster standard errors at the firm

level.14

14Results are similar for other choices of the bandwidth and control function.
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2.2. Compustat and CRSP outcomes

Our dependent variables are drawn from Compustat and CRSP, and include commonly

used transformations of each variable. In order to arrive at a set of Compustat variables,

we collect raw variables from financial statements which are non-missing for at least 70%

of observations in a sample between January 1970 through June 2019. For Compustat

outcomes, we use the raw variable, raw variable scaled by total assets, and the percentage

change of the raw variable scaled by total assets. This approaches results in 96 raw

Compustat variables, generating 288 Compustat outcomes in total. We also use monthly

CRSP stock data in order to calculate firm-year average trading volume, average share

turnover, cumulative returns, average dollar bid-ask spreads, and average percentage

bid-ask spreads using firms’ fiscal years. The resulting sample contains 293 different

dependent variables.

2.3. Simulated true treatment effects

By construction, the realizations of the treatment indicators are simulated to be inde-

pendent of the outcomes, so there should be no relation between the independent and

dependent variables. In order to study how different multiple testing corrections perform

at detecting true effects, we choose sets of 10 and 20 outcome variables at random, with-

out replacement, and add a linear function of the treatment so that they are related to

the independent variables (i.e., we create true effects). These outcomes are constructed

to produce a t-statistic from a uniform distribution between 2.8 and 5. The lower cut-

off of t=2.8 is chosen to ensure that our simulated natural experiments are adequately

powered, that is, a single hypothesis test would reliably detect the effect at p < 0.05 at
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least 80% of the time (Bloom, 1995).

2.4. Comparing multiple testing frameworks

Table 1 summarizes the simulation results. As discussed above, we examine the 293

outcome variables in random order. For each new outcome variable, we apply multiple

testing corrections to the family of tests which includes that outcome and all previously

tested outcomes. The simulated results are then averaged across 10 random orderings

for each of 10 independent simulations – that is, 100 total simulated processes. We

repeat this for each research design and each possible number of true effects (which take

the value 0, 10, or 20).

Table 1 Panel A presents the average performance in terms of false and true dis-

coveries (i.e., false positives and true positives). Before applying multiple testing cor-

rections, in each of the four settings with zero true effects, there are at least 15 false

positive findings, on average, with a p-value < 0.05. This is the multiple testing problem.

When natural experiments are reused, p-values no longer have their usual interpreta-

tion, which may lead to many false positives that are erroneously documented as true

positives. Moreover, the occurrence of false positives is higher in the Staggered Intro-

ductions setting, with over 20 false positives on average. This observation is consistent

with Bertrand et al. (2004) and Spamann (2019) who argue these designs are prone to

overstate statistical significance.

When we introduce 10 or 20 true effects, they are successfully identified as expected,

but the number of false positives remain at roughly the same level as when we exam-

ined zero true effects. Note that this means that, in a real-world setting, a researcher

would infer that 25 or 35 outcomes are significant based on a p-value of 0.05, without
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having any idea of which ones are false positives and which ones are true positives. Put

differently, depending on how many true effects there are in a particular simulation (10

or 20) the false discovery rates for the RCT, IV, or RDD are all similar and range from

approximately 43% (15 of 35, if there are 20 true effects) to 60% (15 of 25, if there are

10 true effects). Moreover, the results are even worse for Staggered Introduction, which

range from approximately 53% (if there are 20 true effects) to 70% (if there are 10 true

effects). Overall, the findings suggest that for commonly reused settings and estimation

techniques, more than 50% of documented findings may be false positives.15

We then examine the performance of several different multiple testing corrections.

Specifically, we examine the Bonferroni and RW corrections, which control the FWER,

as well as the BHY correction, which controls the FDR. They are generally similar to one

another regardless of research design. As expected, the Bonferroni correction successfully

controls the FWER, but it does not detect as many true effects. The RW correction

successfully controls the FWER in a manner similar to the Bonferroni correction, but is

able to detect more true effects. Finally, the BHY correction generally performs similar

to the RW correction. Overall, the results show that the RW and BHY corrections

both perform as expected, and the differences between the two are minimal and vary

depending on the research design and number of true effects.

To further explore the performance of these methods, Panel B presents four standard

criteria used to evaluate methods of statistical inference. The first is the Type I error

(i.e., false-positive) rate. We see that the Type I error rate is 5% as expected for the

uncorrected hypothesis tests; the exception being the Staggered Introductions with a

15Of course, this depends on the number of true effects, which is unknown. Nonetheless,
regardless of the number of true effects, the results indicate that many results are likely to be
false positives.
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rate of 8%. On the other hand, all three multiple testing corrections result in a Type

I error rate that is close to zero. The second is the Type II error (false-negative) rate,

measuring statistical power which is 1 minus the Type II error rate.16 Across correction

methods and research designs, the numbers are generally close to the usual value of 20%.

We also compute each method’s accuracy, defined as the fraction of all tests with the

correct result, and positive predictive value, defined as the fraction of positive results

that are a true treatment effect. For all three corrections, the accuracy is at least 99%

and the positive predicted value is generally above 95%. The exception is Staggered

Introductions where the positive predictive value ranges from 83% to 84% depending on

the correction method.

Overall, the simulations illustrate the inference problem that arises when researchers

reuse natural experiments without accounting for outcomes that have already been ex-

amined. They also suggest that based on the number of tests under consideration,

commonly used outcome variables, and their corresponding dependence structures, the

RW and BHY corrections perform similarly and in a manner that helps make the correct

inference when a setting is reused.

2.4.1. Adjusted t-statistic critical values

In order to provide guidance for future researchers, we calculate adjusted t-statistic

critical values that can be used to make inferences when reusing a setting. In our main

results, we use the RW correction, however, the adjusted t-statistic cutoffs evolve in a

similar manner for the BHY correction. For each setting (randomized control trials,

16Because by construction our simulated natural experiments are adequately powered to
detect the true effects, when no correction is applied, the Type II error rate is 0% and power
is 100%.
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staggered introductions, instrumental variables regressions, and regression discontinuity

designs), the cutoffs indicate the minimum t-statistic necessary for statistical significance

that corresponds to the usual interpretation. As the number of outcomes examined

increases, the cutoff increases.

Figure 1 presents the adjusted critical values. The evolution of the RW adjusted

critical values is similar in all four settings. For further reference, the cutoffs are pre-

sented in tabular format in Appendix Table A1.17 The adjusted critical values for the

fifth test in a family are 2.54 in the RCT setting, 2.53 in the Staggered Introductions

setting, 2.53 in the IV setting, and 2.52 in the RDD setting.18 The critical values for the

tenth outcome increase to 2.76, 2.77, 2.75, and 2.75 for RCT, Staggered Introductions,

IV, and RDD, respectively. Finally, the critical values for the twentieth are 2.98, 2.99,

2.96, and 2.96 for RCT, Staggered Introductions, IV, and RDD, respectively.

Ideally, researchers who are using the RW correction should replicate all existing

studies that use a setting in order to best reflect the dependence between outcomes.

However, if this is not possible, the results in Figure 1 and Appendix A1 provide a

heuristic for inference when reusing a setting. Our results show that a good heuristic is

that a new hypothesis should have a t-statistic of at least 2.5 if there are 5 prior findings

and 3.0 if there are 20 prior findings using the same setting

17Our critical values assume two-sided tests. See Romano and Wolf (2018) for a discussion
of multiple testing with one-sided hypotheses.

18These numbers are for the fifth test only (e.g., for the RCT setting, the first test has a
critical value of 1.96, and the critical values for the second, third, and fourth tests are 2.18,
2.34, and 2.45, respectively).
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3. Evaluating existing evidence

Finally, to assess the practical importance of our findings, we apply our adjusted critical

values to two commonly studied real-world settings. Specifically, we examine the prior

empirical evidence on (i) the causal effects of the staggered introduction of state-specific

business combination laws and (ii) Regulation SHO. To apply the adjusted cutoffs from

our simulations, we collect t-statistics associated with 114 and 434 unique outcome

variables that as of March 31, 2021, have been examined using business combination

laws and Regulation SHO as a source of exogenous variation, respectively.19

We start by compiling a list of all papers that use business combination laws or

Regulation SHO as a source of exogenous variation. We consider unique outcomes

which were examined in these paper using methodologies that could be represented as

difference-in-differences regressions of the form:

yi,t = α + β1 · Treatmenti,t + β2 · Post+ β3 · Treatmenti,t × Post+ ϵi,t, (6)

where yi,t is an outcome variable for firm i in year t, Treatmenti,t is either the stag-

gered introduction of state-specific business combination laws or a dummy indicating

the Regulation SHO Pilot stocks, and Post is a dummy indicating the period after the

beginning of the treatment. We include papers that use various combinations of fixed

effects and/or control variables, as long as they examine the β3 coefficient in a model

19As discussed above, ideally, the multiple testing problem should be addressed by applying
the RW or BHY method directly to all outcomes examined in the literature, however, for RW
this would require replicating all existing results which is often impractical and, in the case of
proprietary data, infeasible. Using adjusted cutoffs in tandem with reported t-statistics from
the literature avoids these issues, and this approach has been used in other papers including
Harvey et al. (2016).
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of the form shown above. We then collect t-statistics from all papers and all models

that satisfy the following conditions. If there are multiple models examining the same

dependent variable, we keep the β3 coefficient from the model with the most controls

and/or fixed effects.20 We exclude models that include additional terms interacted with

the main treatment effect, and models used in sub-sample analysis.21

Since the BHY and RW methods performed similarly in our simulations, we use both

to re-evaluate the reported t-statistics from the existing literature. Because the BHY

correction does not require bootstrapping, we directly apply it to the reported t-statistics

to control the FDR. In contrast, because the RW approach requires bootstrapping, we

instead use our reported t-statistic cutoffs (shown in Appendix Table A1) to adjust the

reported t-statistics from the literature. Both methods generate similar inferences.

3.1. Business combination laws

U.S. states have enacted business combination laws at different points in time. The

enactment of these laws has been used to generate exogenous variation in the threat

of a corporate takeover. Business combination laws impose a moratorium on specified

transactions between a target firm and an acquirer firm unless the board of directors

votes otherwise before the acquirer become an interested shareholder. The early work

of Karpoff and Malatesta (1989) and Comment and Schwert (1995) documents negative

announcement returns and higher takeover premiums for a subset of business combina-

20Results are similar if we choose the model with the least controls and/or fixed effects. The
fact that many papers examine multiple specifications (with different controls, fixed effects,
and/or sample periods) that are testing the same hypothesis, itself, generates a multiple testing
problem. The issues that result from such specification searches within a paper are beyond the
scope of our paper.

21For Regulation SHO, we keep treatment coefficients (i.e., β3) for specifications that examine
the start of the Regulation SHO pilot.
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tion laws. These state-level changes and those that followed have subsequently been used

to examine a wide variety of outcome variables including wages, corporate investment,

corporate innovation, board size, dividends, secondary market liquidity, and workplace

safety.

Karpoff and Wittry (2018) show that the institutional, political economy, and his-

torical context surrounding the enactment of these laws suggests that they were not

exogenous for many firms, which makes results in this setting more difficult to interpret.

In order to mitigate concerns about omitted variable bias, Karpoff and Wittry (2018)

introduce a state of the art specification which more accurately measures institutional

and legal context. While we stress that the Karpoff and Wittry (2018) specification

should be used by researchers examining business combination laws, we apply multiple

testing adjustments to outcomes from the existing literature regardless of the specifica-

tion used by the original authors. Results are also qualitatively similar when we apply

adjusted RW cutoffs estimated using the sample and full set of institutional controls of

Karpoff and Wittry (2018).

3.2. Regulation SHO

We also evaluate the evidence on the causal effects of the Regulation SHO pilot, which

was a regulatory experiment enacted by the SEC. The pilot program assigned firms into

treated and control groups and suspended Rule 10a-1 “the uptick rule” for firms in the

treatment group. The pilot was specifically conducted by the SEC to examine the uptick

rule which restricted short sales so they could only execute when a firm’s stock price

was above the last traded price (i.e., an uptick). The experiment temporarily suspended

Rule 10a-1 as well as any short-sale price test for a stratified sample of 1,000 stocks in
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the Russell 3000 index. To construct the 1,000 treatment firms, the SEC staff sorted all

Russell 3000 securities by volume, and designated every third security as a treatment

firm, leaving the remaining 2,000 securities as control firms. Treatment began on May

2, 2005 and the experiment continued until July 6, 2007 at which point price tests were

removed for all firms. While Regulation SHO was setup as an RCT, the study is now

effectively being used as a natural experiment: more than 80 papers have reused the

setting to examine hypotheses that were not part of the original experiment design.

The setting has been reused to examine a wide variety of outcome variables including

corporate investment, innovation, payout policies, workplace safety, analysts rounding

of forecasts, and banks’ loss recognition.

3.3. Sequencing tests

As previously discussed, when applying multiple hypothesis corrections, the sequence of

outcomes examined may affect inference.22 The flexibility associated with sequencing

the tests conducted by separate research teams and over time raises the question of

how such choices should be made in practice (Foster & Stine, 2008). We examine two

approaches, discussed below.

We first examine a sequential ordering approach that is based on the date each result

was first reported in the public domain. Ideally, we would sequence outcomes based on

when each test was undertaken, but since this is not knowable, we use the first reported

date as a proxy for when the test was undertaken. Similar to the approach in Harvey

et al. (2016), we manually search SSRN, Google Scholar, and academic journals for the

22Sequential multiple testing corrections do not retroactively change the inference of previous
tests. For more on sequential multiple testing, see Thompson et al. (2020).
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date that each result was first made publicly available. If multiple outcomes share the

same reported date, we add them to the family of tests simultaneously. An advantage of

this approach is that it is relatively simple and objective. However, it does not consider

experimental design.

We next propose an alternative approach referred to as a “best foot forward policy”

in the multiple testing literature” (Foster & Stine, 2008) which typically focuses on

experimental design. In this approach, outcomes are ordered from high to low based on

the likelihood that they will be rejected given the experiment. While the ordering of

outcomes is ultimately subjective, we base our illustration of the best foot forward policy

on experimental design and the causal channels proposed in the business combination

laws and Regulation SHO literature. Consequently, the intended treatment effects have

a lower statistical hurdle. As new potential treatment effects are proposed, we consider

the causal arguments that link them to the intended treatment effect and add related

outcomes to the family of tests at the appropriate level. The benefit of this approach

compared to hierarchical methods (Dmitrienko & Tamhane, 2007; Yekutieli, 2008) is

that indirect treatment effects can be examined and properly evaluated.23 In other

words, it recognizes that stakeholders further removed for a given treatment can be

affected, and that endogenous adjustments can even contribute to the absence of an

observed intended treatment effects.

In the case of business combination laws, the enactment of state-level laws were

designed to restrict hostile takeovers. As a result, researchers have suggested that this

could affect takeover-related outcomes, such as takeover premia or realized takeover

23In the hierarchical approach a rejection of the null at the prior level is required to proceed
to a subsequent level of the hierarchy so that the cutoff following the first failure to reject is
effectively infinite.
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activity. Therefore, we define takeover-related outcomes as first order effects (i.e., these

effects are sequenced first). The causal channels proposed in the literature have further

suggested that a change in the threat of takeover could result in a change in corporate

governance, which in turn could affect firm level outcomes. Consequently, we define

firm level outcomes as second-order effects. Finally, external parties may respond to

potential changes at the firm. We group outcome variables related to external parties

as third-order effects.

The Regulation SHO pilot was designed to loosen restrictions on short selling thus, we

sequence measures of short selling activity first (i.e., short volume, short interest, etc.).

In turn, the causal channels proposed in the literature further suggest that changes in

short selling activity could have implications for liquidity and price formation; thus, we

sequence these variables next, as second-order effects. The literature on the real effects

of financial markets in turn suggests that the increased threat of short selling, and the

impact it could have on prices could affect firm-level decisions; these are sequenced as

third-order effects. Finally, external parties may respond to potential changes at the

firm. Consequently, we group outcome variables related to external parties as fourth-

order effects.

If there are multiple outcome variables examined within the same order (e.g., the

literature has examined multiple second order effects), we then sequence these variables

by the date they were first publicly reported. If variables within the same order are

publicly reported on the same date, we add them to the family of tests simultaneously.

The “best foot forward” approach requires greater coordination among researchers as

exploration should ideally follow agreed-upon order, and is necessarily more subjective

than sequencing the tests by the date they are first reported.
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3.4. Results

The results for the 114 outcomes that have been tested using business combination laws

are shown in Figure 3. Panel A plots the reported t-statistic for each outcome as a

gray dot, sorted by the date it was first publicly available.24 The solid blue curve plots

the t-statistic cutoffs based on the BHY correction, while the solid black curve plots

the cutoffs based on the RW correction. The lines resemble step function rather than

the smooth lines in Figure 1. The reason is that multiple outcomes may be examined

in a single paper, and if this happens they are evaluated against the same threshold.25

The red dashed line is the t-statistic cutoff for a single test. While more than half the

outcomes were reported to be significant in the original papers (73 out of 114), Table 2,

Panel A shows that fewer than half of these survive the correction for multiple hypothesis

testing. Moreover, the BHY correction appears to be slightly more permissive than RW.

Based on the RW correction, a t-statistic cutoff of 3.47 should be applied after 114

outcomes have been examined (See Appendix Table A1, Panel B). We zoom in on the

first 20 outcomes in Panel C to show that a few wage-related outcomes (Log Deflated

Wage, Log of Total CEO Compensation, and Log of White Collar Worker Wages), plant

openings and closings, as well as several patent-citation outcomes plot on or above the

RW t-statistic cutoff (fewer plot above the BHY cutoff).

Panel B of Figure 3 has the same general layout, but here we order the outcomes

based on the “best foot forward” approach. If there are multiple outcomes within a given

grouping, we sort the outcomes by the date they were first publicly reported. The Figure

24The vertical axis in the figure is truncated at a t-statistic cutoff of 5.0, and dots representing
outcomes with higher t-statistics in the original paper(s) are plotted at 5.0.

25Note: the BHY correction may produce cutoffs that increase non-monotonically in the
number of examined outcomes, particularly for low numbers of evaluated outcomes. Similar
patterns are found in Harvey et al. (2016).
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shows that none of outcomes that we define as take-over related (first-order effects) plot

above the t-stat cutoffs for the BHY or RW corrections, respectively. This is easier to

see in Panel D where we zoom in on the first 20 outcomes. In other words, this approach

shows that none of the first-order effects is significant based on the single-test cutoff,

and thus, they certainly do not survive corrections for multiple hypothesis testing. This

echoes findings by Cain, McKeon, and Solomon (2017) and Karpoff and Wittry (2018).

We proceed similarly for the 434 outcomes that have been examined using Regulation

SHO. The results are shown in Figure 4. Panel A plots the reported t-statistics for each

outcome sorted by the date it was first publicly available. There are several unique

features of this figure. First, the dots for early papers are plotted either as 2.58 and

1.96. The reason is that early papers in this literature only report asterisks indicating

significance at the 1% and 5% levels. Accordingly we assume the t-statistics for these

variables correspond to the single-hypothesis cutoffs for significance at the 1% and 5%

levels.26 Second, the t-statistic cutoff for both BHY and RW start at 3.07 (see Appendix

Table A1, Panel A) because the first paper (Alexander & Peterson, 2008) tested 28

unique outcomes. Third, the Regulation SHO literature has examined more outcomes

than we cover in our simulations, so we provide Bonferroni cutoffs (indicated by a dashed

black curve) after more than 293 outcomes have been examined.

The Regulation SHO results mirror the results from business combination laws.

While more than half of outcomes were statistically significant in the original papers

(219 out of 434), Table 2 Panel C shows that only approximately ten percent survive

the correction for multiple hypothesis testing (the BHY correction is slightly more per-

missive than RW). After 434 outcomes have been examined, the t-statistic cutoff that

26If these papers report an insignificant outcome, we assume that it has a t-statistic of one.
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should be applied based on the Bonferroni correction is 3.86. For transparency, we again

zoom in on the first 20 outcomes in Panel C and none of the outcomes plot above either

the BHY or the RW cutoffs.

Finally, in Panel B we sequence outcomes from the Regulation SHO literature based

on the “best foot forward” approach. The clustering of dots at 2.58 makes it difficult

to discern if the first-order effects in the plot above the t-statistic cutoffs, so we again

zoom in on the first 20 outcomes in Panel D. The first four outcomes examined in Panel

D relate to short-selling activity (No. Trades, Short/Long, Trade Size (Short Sale),

and Volume), and these plot above the RW t-statistic cutoff. However, none of the

outcomes measuring short positions (Short Interest (NYSE), Abnormal Short Interest,

and SHORT RATIO) plot above the RW (or the BHY) t-statistic cutoff. Hence, while

arbitrage activity appears to have increased, we find no evidence that traders increased

their short positions as a result of Regulation SHO. This finding agrees with the evidence

in Diether, Lee, and Werner (2009).

4. Discussion

In this section, we note caveats to our findings, discuss other potential solutions to the

multiple testing problem, and provide an overview of best practices when reusing natural

experiments.
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4.1. Caveats

4.1.1. p-values are only one input for inference

Fisher (1925) presented the p-value as only one of many inputs that should be used in

evaluating research and making decisions. Similarly, we caution that multiple testing

correction methods are not a panacea; simply clearing the hurdle of adjusted critical

values does not mean that a research design is valid. Moreover, researchers should take

care in interpreting p-values: a p-value of 0.09 should not be viewed as proving a result

exists, nor should a p-value of 0.11 be viewed as proving there is no result. Rather,

p-values are just one of many inputs that assist with inference, along with information

about the proposed economic mechanism and the validity of the research design.

4.1.2. What is the right burden of proof?

Motivated by our simulation evidence, we suggest that researchers should use the ad-

justed critical values in Appendix Table A1 when reusing a setting. However, some may

wonder whether the medicine is worse than the disease: in other words, do the additional

complications associated with our recommendations, as well as the possible increase in

Type II error rates, result in improved inference?

While the trade-off between Type I and Type II error rates is ultimately a philo-

sophical question that is beyond the scope of this paper, we do note that the results in

Panel B of Table 1 show strong evidence that the RW and BHY methods we recommend

have better accuracy (and better positive predicted values) than uncorrected results.

In other words, the simulation results suggest our recommendations will lead to test

statistics that more frequently yield the correct result.
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Some may argue that the multiple testing problem should not apply since researchers

develop a variety of different testable hypotheses when reusing a natural experiment and

are not interested in the experiment per se. However, policymakers evaluate the evi-

dence surrounding a given natural experiment when making policy that affects many

stakeholders. For example, the SEC (2007) considered papers that examined the treat-

ment effects of removing the uptick rule during the Regulation SHO pilot, and in large

part decided to repeal the uptick rule because of this evidence. As Leamer (1983) put

it, Economics research has “customers in government, business, and on the boardwalk

at Atlantic City.” Policy implementations that are based on false positive results could

potentially be very costly for society.

4.2. Improving Inference when reusing a natural experiment

Our analyses are largely focused on a statistical issue: p-values do not have their usual

interpretation when a large number of outcomes is examined in a family of tests. In this

section, we provide other guidelines for improving inference when reusing a setting.

4.2.1. Corroborating evidence

It is important to note that our results do not consider the various types of additional

tests that researchers can provide when conducting inference. One way that researchers

address the multiple hypothesis testing problem by gathering new data, that is, if re-

searchers can find a new experiment that can be used to study the same question, then

the resulting new test will not be in the same family of tests as the existing literature.27

27Note that simply adding more observations surrounding the same experiment does not
solve the problem as the source of the exogenous variation is still the same.
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Researchers also base their inference on multiple outcomes in a given setting. Put dif-

ferently, if existing theory predicts effects on more than one variable, then testing more

than one variable may create additional information to improve inference. Basing infer-

ence on multiple outcomes can be accommodated by bootstrap-based multiple testing

correction procedures, as they maintain control of false positives while not unnecessarily

penalizing correlated outcomes. Researchers also develop and test additional hypothe-

ses of heterogeneous treatment effects. Yekutieli (2008) and Dmitrienko and Tamhane

(2007) discuss hierarchical corrections for heterogeneous treatment effects.

4.2.2. State and test causal channels

Experimental research in the social sciences is often complicated by the fact that humans

change their behavior in complex ways. For example, even if the Regulation SHO pilot

did not change the cost of short selling, it may have changed firm outcomes if firm man-

agers believed the experiment would change short selling in their stock. Consequently,

the Regulation SHO pilot could result in a change in manager behavior without an in-

crease in actual short selling activity. In such a case, the authors must establish how,

and why, such an effect is possible. Researchers should establish and attempt to provide

supporting evidence of causal channels. For example, in their analysis of Regulation

SHO, De Angelis, Grullon, and Michenaud (2017) cite a letter to the SEC which argues

that many firms were worried the removal of the uptick rule could affect their stock

prices.
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4.2.3. Compound exclusion restrictions

Finally, Morck and Yeung (2011) note that “each successful use of an instrument cre-

ates an additional latent variable problem for all other uses of that instrument.” This

concern applies more generally within the context of all natural experiments, not just

instrumental variables settings. Researchers reusing an experimental setting should rec-

oncile their exclusion restrictions with existing empirical evidence available when their

study is written. As a hypothetical example, suppose that a research team discovers a

natural experiment that changes variable Y1 because it changes variable X. Suppose an-

other research team later examines the same setting, and finds a statistically significant

result for variable Y2. The typical exclusion restriction states that the experiment af-

fects Y2 only through X, but there is already evidence that Y1 changes too. Accordingly,

the researchers should reconcile their exclusion restriction with this existing evidence.28

While there has been some recent work attempting to obtain statistical inference on

the validity of exclusion restrictions (Kiviet, 2020), these issues are typically addressed

through rhetorical reasoning. In practice, few of the business combination laws and

Regulation SHO papers reconcile their exclusion restriction with the voluminous exist-

ing literature. While this requirement is necessarily situation-specific and subjective,

we direct the reader to more formal prescriptions for causal inference from the statistics

literature (Pearl, 1995, 2009).

28It is possible to interpret the new finding as a reduced form estimate, but at a minimum,
the authors need to acknowledge and discuss the existing evidence.

32



5. Conclusion

Natural experiments have become an important tool for identifying the causal relation

between variables. While the use of natural experiments has increased the credibility

of empirical economics in many dimensions (Angrist & Pischke, 2010), we show that

the repeated reuse of these settings may lead to p-values that cannot be interpreted

in the usual manner. While we are the first to provide direct evidence on this point,

we are not the first to acknowledge the issue. For example, Leamer (2010) writes,

“[some researchers] may come to think that it is enough to wave a clove of garlic and

chant “randomization” to solve all our problems...” Our results confirm this point;

randomization by itself does not solve all inference problems.

We document that two extensively studied natural experiments, business combina-

tion laws and the Regulation SHO pilot, have been collectively used to examine more

than 500 different dependent variables. We also note that business combination laws

and Regulation SHO are not alone. There are many other frequently reused natural ex-

periments in social sciences for which our arguments apply. For example, Mellon (2021)

documents 176 different outcomes that have been examined using rainfall as an instru-

mental variable, the Russell stock index reconstitution has been reused in more than

80 different studies, the U.S. Tick Size Pilot has been reused in more than 60 different

studies, and Universal Demand Laws have been reused in more than 30 studies.29

To aid future research, we provide guidelines for inference when an experiment is

reused. We use simulations to estimate adjusted critical values as a function of the

number of times a setting is examined. We also show that multiple testing adjusted t-

29Tabulations based on Google Scholar and Appel (2019) for Universal Demand Laws.

33



statistics are significantly more accurate than unadjusted t-statistics. Finally, we apply

our recommendations to existing findings from research on business combination laws

and the Regulation SHO pilot; we find that many results in the literature that were

statistically significant using single hypothesis testing do not survive corrections for

multiple hypothesis testing. Overall, we hope our study contributes to the credibility

revolution, not by dissuading the use of natural experiments, but rather by helping

researchers account for multiple testing when natural experiments are reused.
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Table 1: Simulations

This table presents simulation evidence on the performance of different multiple testing corrections for four types of simulated settings: random-

ized control trials, the staggered introduction of state-level changes (Staggered Introductions), instrumental variables, and regression discontinuity

designs. We examine 293 outcome variables obtained from Compustat and CRSP in random order. For each new outcome variable, we apply

multiple testing corrections to the family of tests which includes that outcome and all previously tested outcomes. The simulated results are then

averaged across 10 random orderings for each of 10 independent simulations. In certain simulations, we also incorporate 10 and 20 simulated

true effects which are a linear function of the treatment. For each additional outcome added to the family of tests, we apply the Bonferroni

(1936) FWER correction, the FDR correction of Benjamini and Yekutieli (2001) (BHY), and the FWER correction of Romano and Wolf (2005,

2016) (RW) in order to determine statistical significance for that outcome. Averages frequencies of true positives and false positives for each

empirical setting across simulations are presented in Panel A. Panel B presents the performance of each correction across several criteria. The

Type-I error rate is (# false positives / # null effects). The Type-II error rate is (# false negatives / # true effects). Accuracy is the fraction

of all tests with the correct result. Positive predictive value is the probability that a positive finding is a true effect.

Panel A: Occurrence of False Positives and True Positives

Multiple Testing Correction

No correction Bonferroni BHY RW

Research Design True Effects False+ True+ False+ True+ False+ True+ False+ True+

0 14.7 0.0 0.2 0.0 0.1 0.0 0.2 0.0

Randomized Control Trials 10 15.5 10.0 0.4 7.9 0.1 7.2 0.4 8.1

20 14.1 20.0 0.1 16.4 0.1 17.1 0.2 17.1

0 23.5 0.0 2.1 0.0 1.3 0.0 2.3 0.0

Staggered Introductions 10 22.4 10.0 1.8 6.6 1.6 6.3 2.0 6.9

20 22.2 20.0 2.1 15.1 2.3 16.2 2.2 16.0

0 15.6 0.0 0.3 0.0 0.1 0.0 0.4 0.0

Regression Discontinuity Designs 10 14.8 10.0 0.3 8.0 0.3 7.9 0.5 8.2

20 14.8 20.0 0.3 14.5 0.3 14.6 0.5 14.9

0 15.8 0.0 0.4 0.0 0.1 0.0 0.4 0.0

Instrumental Variables 10 13.8 10.0 0.1 8.3 0.0 7.9 0.1 8.7

20 14.3 20.0 0.1 15.5 0.1 16.1 0.2 16.3
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Panel B: Performance Criteria

Multiple Testing Correction

Criterion Research Design No correction Bonferroni BHY RW

Type I error rate

Randomized Control Trials 5.2% 0.1% 0.0% 0.1%

Staggered Introductions 8.0% 0.7% 0.6% 0.8%

Regression Discontinuity Designs 5.3% 0.1% 0.1% 0.2%

Instrumental Variables 5.2% 0.1% 0.0% 0.1%

Type II error rate

Randomized Control Trials 0.0% 19.5% 21.2% 16.8%

Staggered Introductions 0.0% 29.2% 28.0% 25.5%

Regression Discontinuity Designs 0.0% 23.8% 24.0% 21.8%

Instrumental Variables 0.0% 19.8% 20.2% 15.7%

Accuracy

Randomized Control Trials 95.0% 99.3% 99.3% 99.4%

Staggered Introductions 92.2% 98.4% 98.6% 98.5%

Regression Discontinuity Designs 94.8% 99.0% 99.1% 99.1%

Instrumental Variables 95.0% 99.2% 99.3% 99.4%

Positive predictive value

Randomized Control Trials 48.9% 97.3% 99.0% 97.1%

Staggered Introductions 38.9% 83.2% 83.7% 82.7%

Regression Discontinuity Designs 48.2% 97.2% 97.2% 95.5%

Instrumental Variables 50.2% 99.1% 99.7% 98.8%
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Table 2: Evaluating existing evidence

This table presents results from applying multiple testing corrections to reported results examining the treatment ef-

fects of business combination laws and Regulation SHO. Reported t-statistics are obtained for 114 and 434 unique out-

comes examined using business combination laws and Regulation SHO, respectively. We directly apply the Bonferroni

(1936) FWER correction and the FDR correction of Benjamini and Yekutieli (2001) (BHY) to the reported t-statistics.

We separately apply the Romano and Wolf (2005, 2016) (RW) adjusted critical values obtained from simulations and

presented in Figure 1 and Appendix Table A1 to the reported t-statistics. Panel A presents results for the reported

treatment effects of business combination laws, where outcomes are sequenced by the date they were first reported.

Panel B presents results for the reported treatment effects of business combination laws, where outcomes are se-

quenced using the best foot forward policy. Panel C presents results for the reported treatment effects of Regulation

SHO, where outcomes are sequenced by the date they were first reported. Panel B presents results for the reported

treatment effects of Regulation SHO, where outcomes are sequenced using the best foot forward policy.

Panel A: Business Combination Laws, Reported Date Panel B: Business Combination Laws, Best Foot Forward

Multiple Testing #Statistically Multiple Testing #Statistically

Correction Significant %Outcomes Correction Significant %Outcomes

No correction 73 64.04% No correction 73 64.04%

BHY 36 31.58% BHY 33 28.95%

RW 28 24.56% RW 27 23.68%

Panel C: Regulation SHO, Reported Date Panel D: Regulation SHO, Best Foot Forward

Multiple Testing #Statistically Multiple Testing #Statistically

Correction Significant %Outcomes Correction Significant %Outcomes

No correction 219 50.46% No correction 219 50.46%

BHY 26 5.99% BHY 31 7.14%

RW 21 4.84% RW 33 7.60%
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Figure 1: Multiple testing adjusted critical values by research design. This figure presents adjusted t-

statistic critical values for four types of simulated settings: randomized control trials, the staggered introduction of

state-level changes (Staggered Introductions), instrumental variables, and regression discontinuity designs. We examine

293 outcome variables obtained from Compustat and CRSP in random order. For each new outcome variable, we apply

multiple testing corrections to the family of tests which includes that outcome and all previously tested outcomes.

The simulated results are then averaged across 10 random orderings for each of 10 independent simulations. For each

additional outcome added to the family of tests, we compute adjusted critical values using the FWER correction of

Romano and Wolf (2005, 2016) (RW). Panel A presents results for randomized control trials, Panel B presents results for

Staggered Introductions, Panel C presents results for instrumental variables, and Panel D presents results for regression

discontinuity designs. The adjusted cutoffs are presented in tabular format in Appendix Table A1.
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Figure 2: Best Foot Forward Policy. This figure illustrates our implementation of the best foot forward policy for

the two natural experiments we evaluate. Panel A displays the best foot forward policy for business combination laws

and Panel B displays the best foot forward policy for Regulation SHO.

Panel A: Business Combination Laws

Panel B: Regulation SHO
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Figure 3: Evaluating existing evidence, business combination laws presents results from applying multiple

testing corrections to reported results examining the treatment effects of business combination laws. Reported t-

statistics are obtained for 114 unique outcomes examined using business combination laws (gray dots). We directly

apply the FDR (blue curve) correction of Benjamini and Yekutieli (2001) (BHY) to the reported t-statistics. We

separately apply the Romano and Wolf (2005, 2016) (RW) adjusted critical values obtained from simulations (black

curve) and presented in Figure 1 (Panel B) to the reported t-statistics. Panel A presents results when outcomes are

sequenced by the date they were first reported. Panel B presents results when outcomes are sequenced using the best

foot forward policy. Panel C presents results when outcomes are sequenced by the date they were first reported for the

first 20 outcomes. Panel D presents results when outcomes are sequenced using the best foot forward policy for the

first 20 outcomes.
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Figure 4: Evaluating existing evidence, Regulation SHO presents results from applying multiple testing correc-

tions to reported results examining the treatment effects of Regulation SHO. Reported t-statistics are obtained for 434

unique outcomes examined using Regulation SHO (gray dots). We directly apply the FDR (blue curve) correction of

Benjamini and Yekutieli (2001) (BHY) to the reported t-statistics. We separately apply the Romano and Wolf (2005,

2016) (RW) adjusted critical values obtained from simulations (black curve) and presented in Figure 1 (Panel A) to the

reported t-statistics. When the number of outcomes exceeds 293, we replace the RW cutoffs with the FWER correction

of Bonferroni (1936) (black dashed curve). Panel A presents results when outcomes are sequenced by the date they

were first reported. Panel B presents results when outcomes are sequenced using the best foot forward policy. Panel C

presents results when outcomes are sequenced by the date they were first reported for the first 20 outcomes. Panel D

presents results when outcomes are sequenced using the best foot forward policy for the first 20 outcomes.
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Table A1: Adjusted Critical Values

This table presents adjusted t-statistic critical values for four types of simulated settings: randomized control trials, the

staggered introduction of state-level changes (Staggered Introductions), instrumental variables, and regression discontinuity

designs. We examine 293 outcome variables obtained from Compustat and CRSP in random order. For each new outcome

variable, we apply multiple testing corrections to the family of tests which includes that outcome and all previously tested

outcomes. The simulated results are then averaged across 10 random orderings for each of 10 independent simulations. For each

additional outcome added to the family of tests, we compute adjusted critical values using the FWER correction of Romano

and Wolf (2005, 2016) (RW). Panel A presents results for randomized control trials, Panel B presents results for Staggered

Introductions, Panel C presents results for instrumental variables, and Panel D presents results for regression discontinuity

designs.

Panel A: Randomized Control Trials

#Outcomes t #Outcomes t #Outcomes t #Outcomes t #Outcomes t

1 1.96 60 3.28 119 3.45 178 3.55 237 3.61
2 2.18 61 3.28 120 3.46 179 3.55 238 3.61
3 2.34 62 3.29 121 3.46 180 3.55 239 3.61
4 2.45 63 3.29 122 3.46 181 3.55 240 3.61
5 2.54 64 3.30 123 3.46 182 3.55 241 3.61
6 2.60 65 3.30 124 3.46 183 3.55 242 3.61
7 2.65 66 3.30 125 3.46 184 3.55 243 3.61
8 2.69 67 3.31 126 3.47 185 3.56 244 3.61
9 2.73 68 3.31 127 3.47 186 3.56 245 3.62
10 2.76 69 3.31 128 3.47 187 3.56 246 3.62
11 2.80 70 3.32 129 3.47 188 3.56 247 3.62
12 2.82 71 3.32 130 3.47 189 3.56 248 3.62
13 2.85 72 3.32 131 3.47 190 3.56 249 3.62
14 2.87 73 3.33 132 3.48 191 3.56 250 3.62
15 2.89 74 3.33 133 3.48 192 3.56 251 3.62
16 2.91 75 3.34 134 3.48 193 3.57 252 3.62
17 2.93 76 3.34 135 3.48 194 3.57 253 3.62
18 2.95 77 3.34 136 3.48 195 3.57 254 3.62
19 2.96 78 3.35 137 3.49 196 3.57 255 3.62
20 2.98 79 3.35 138 3.49 197 3.57 256 3.63
21 2.99 80 3.35 139 3.49 198 3.57 257 3.63
22 3.00 81 3.36 140 3.49 199 3.57 258 3.63
23 3.01 82 3.36 141 3.49 200 3.57 259 3.63
24 3.03 83 3.36 142 3.49 201 3.58 260 3.63
25 3.04 84 3.36 143 3.50 202 3.58 261 3.63
26 3.05 85 3.37 144 3.50 203 3.58 262 3.63
27 3.06 86 3.37 145 3.50 204 3.58 263 3.63
28 3.07 87 3.37 146 3.50 205 3.58 264 3.63
29 3.08 88 3.38 147 3.50 206 3.58 265 3.63
30 3.09 89 3.38 148 3.50 207 3.58 266 3.63
31 3.10 90 3.38 149 3.51 208 3.58 267 3.63
32 3.11 91 3.39 150 3.51 209 3.58 268 3.64
33 3.12 92 3.39 151 3.51 210 3.58 269 3.64
34 3.12 93 3.39 152 3.51 211 3.59 270 3.64
35 3.13 94 3.40 153 3.51 212 3.59 271 3.64
36 3.14 95 3.40 154 3.51 213 3.59 272 3.64
37 3.15 96 3.40 155 3.52 214 3.59 273 3.64
38 3.16 97 3.40 156 3.52 215 3.59 274 3.64
39 3.16 98 3.41 157 3.52 216 3.59 275 3.64
40 3.17 99 3.41 158 3.52 217 3.59 276 3.64
41 3.18 100 3.41 159 3.52 218 3.59 277 3.64
42 3.18 101 3.41 160 3.52 219 3.59 278 3.64
43 3.19 102 3.42 161 3.52 220 3.59 279 3.65
44 3.20 103 3.42 162 3.53 221 3.60 280 3.65
45 3.20 104 3.42 163 3.53 222 3.60 281 3.65
46 3.21 105 3.42 164 3.53 223 3.60 282 3.65
47 3.21 106 3.43 165 3.53 224 3.60 283 3.65
48 3.22 107 3.43 166 3.53 225 3.60 284 3.65
49 3.23 108 3.43 167 3.53 226 3.60 285 3.65
50 3.23 109 3.43 168 3.53 227 3.60 286 3.65
51 3.24 110 3.43 169 3.54 228 3.60 287 3.65
52 3.24 111 3.44 170 3.54 229 3.60 288 3.65
53 3.25 112 3.44 171 3.54 230 3.60 289 3.65
54 3.25 113 3.44 172 3.54 231 3.60 290 3.65
55 3.26 114 3.44 173 3.54 232 3.60 291 3.65
56 3.26 115 3.45 174 3.54 233 3.61 292 3.66
57 3.27 116 3.45 175 3.54 234 3.61 293 3.66
58 3.27 117 3.45 176 3.54 235 3.61
59 3.28 118 3.45 177 3.55 236 3.61
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Panel B: Staggered Introductions

#Outcomes t #Outcomes t #Outcomes t #Outcomes t #Outcomes t

1 1.96 60 3.30 119 3.48 178 3.58 237 3.65
2 2.19 61 3.30 120 3.48 179 3.57 238 3.64
3 2.35 62 3.31 121 3.48 180 3.57 239 3.65
4 2.46 63 3.31 122 3.49 181 3.57 240 3.65
5 2.53 64 3.32 123 3.49 182 3.57 241 3.65
6 2.59 65 3.32 124 3.49 183 3.58 242 3.65
7 2.65 66 3.32 125 3.49 184 3.58 243 3.65
8 2.70 67 3.33 126 3.49 185 3.58 244 3.65
9 2.74 68 3.33 127 3.50 186 3.58 245 3.65
10 2.78 69 3.34 128 3.50 187 3.58 246 3.65
11 2.81 70 3.34 129 3.50 188 3.58 247 3.65
12 2.84 71 3.34 130 3.50 189 3.58 248 3.66
13 2.86 72 3.35 131 3.50 190 3.58 249 3.66
14 2.88 73 3.35 132 3.50 191 3.59 250 3.66
15 2.90 74 3.36 133 3.51 192 3.59 251 3.66
16 2.92 75 3.36 134 3.51 193 3.59 252 3.66
17 2.94 76 3.36 135 3.51 194 3.59 253 3.66
18 2.96 77 3.37 136 3.51 195 3.59 254 3.66
19 2.98 78 3.37 137 3.51 196 3.59 255 3.66
20 2.99 79 3.37 138 3.51 197 3.59 256 3.66
21 3.00 80 3.38 139 3.52 198 3.60 257 3.66
22 3.02 81 3.38 140 3.52 199 3.60 258 3.67
23 3.03 82 3.38 141 3.52 200 3.60 259 3.67
24 3.04 83 3.39 142 3.52 201 3.60 260 3.67
25 3.05 84 3.39 143 3.52 202 3.60 261 3.67
26 3.07 85 3.39 144 3.52 203 3.60 262 3.67
27 3.08 86 3.40 145 3.53 204 3.60 263 3.67
28 3.09 87 3.40 146 3.53 205 3.61 264 3.67
29 3.10 88 3.40 147 3.53 206 3.61 265 3.67
30 3.11 89 3.40 148 3.53 207 3.61 266 3.67
31 3.12 90 3.41 149 3.53 208 3.61 267 3.67
32 3.12 91 3.41 150 3.53 209 3.61 268 3.67
33 3.13 92 3.41 151 3.53 210 3.61 269 3.67
34 3.14 93 3.42 152 3.53 211 3.61 270 3.68
35 3.15 94 3.42 153 3.54 212 3.62 271 3.68
36 3.16 95 3.42 154 3.54 213 3.62 272 3.68
37 3.17 96 3.42 155 3.54 214 3.62 273 3.68
38 3.17 97 3.43 156 3.54 215 3.62 274 3.68
39 3.18 98 3.43 157 3.54 216 3.62 275 3.68
40 3.19 99 3.43 158 3.54 217 3.62 276 3.68
41 3.19 100 3.43 159 3.55 218 3.62 277 3.68
42 3.20 101 3.44 160 3.55 219 3.62 278 3.68
43 3.21 102 3.44 161 3.55 220 3.63 279 3.68
44 3.21 103 3.44 162 3.55 221 3.63 280 3.68
45 3.22 104 3.44 163 3.55 222 3.63 281 3.68
46 3.23 105 3.45 164 3.55 223 3.63 282 3.68
47 3.23 106 3.45 165 3.55 224 3.63 283 3.69
48 3.24 107 3.45 166 3.55 225 3.63 284 3.69
49 3.24 108 3.45 167 3.56 226 3.63 285 3.69
50 3.25 109 3.46 168 3.56 227 3.63 286 3.69
51 3.26 110 3.46 169 3.56 228 3.63 287 3.69
52 3.26 111 3.46 170 3.56 229 3.64 288 3.69
53 3.27 112 3.46 171 3.56 230 3.64 289 3.69
54 3.27 113 3.47 172 3.56 231 3.64 290 3.69
55 3.28 114 3.47 173 3.56 232 3.64 291 3.69
56 3.28 115 3.47 174 3.57 233 3.64 292 3.69
57 3.29 116 3.47 175 3.57 234 3.64 293 3.69
58 3.29 117 3.48 176 3.57 235 3.64
59 3.30 118 3.48 177 3.57 236 3.64
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Panel C: Instrumental Variables

#Outcomes t #Outcomes t #Outcomes t #Outcomes t #Outcomes t

1 1.96 60 3.25 119 3.42 178 3.52 237 3.58
2 2.19 61 3.26 120 3.42 179 3.52 238 3.58
3 2.34 62 3.26 121 3.43 180 3.52 239 3.58
4 2.45 63 3.27 122 3.43 181 3.52 240 3.58
5 2.53 64 3.27 123 3.43 182 3.52 241 3.58
6 2.59 65 3.27 124 3.43 183 3.52 242 3.58
7 2.64 66 3.28 125 3.44 184 3.52 243 3.59
8 2.68 67 3.28 126 3.44 185 3.53 244 3.59
9 2.72 68 3.29 127 3.44 186 3.53 245 3.59
10 2.75 69 3.29 128 3.44 187 3.53 246 3.59
11 2.78 70 3.29 129 3.44 188 3.53 247 3.59
12 2.80 71 3.30 130 3.44 189 3.53 248 3.59
13 2.83 72 3.30 131 3.45 190 3.53 249 3.59
14 2.85 73 3.30 132 3.45 191 3.53 250 3.59
15 2.87 74 3.31 133 3.45 192 3.53 251 3.59
16 2.89 75 3.31 134 3.45 193 3.54 252 3.59
17 2.91 76 3.32 135 3.45 194 3.54 253 3.59
18 2.92 77 3.32 136 3.46 195 3.54 254 3.59
19 2.94 78 3.32 137 3.46 196 3.54 255 3.60
20 2.96 79 3.33 138 3.46 197 3.54 256 3.60
21 2.97 80 3.33 139 3.46 198 3.54 257 3.60
22 2.98 81 3.33 140 3.46 199 3.54 258 3.60
23 3.00 82 3.33 141 3.47 200 3.54 259 3.60
24 3.01 83 3.34 142 3.47 201 3.54 260 3.60
25 3.02 84 3.34 143 3.47 202 3.55 261 3.60
26 3.03 85 3.34 144 3.47 203 3.55 262 3.60
27 3.04 86 3.34 145 3.47 204 3.55 263 3.60
28 3.05 87 3.35 146 3.47 205 3.55 264 3.60
29 3.06 88 3.35 147 3.48 206 3.55 265 3.60
30 3.07 89 3.35 148 3.48 207 3.55 266 3.60
31 3.08 90 3.36 149 3.48 208 3.55 267 3.60
32 3.09 91 3.36 150 3.48 209 3.55 268 3.61
33 3.10 92 3.36 151 3.48 210 3.55 269 3.61
34 3.10 93 3.36 152 3.48 211 3.55 270 3.61
35 3.11 94 3.37 153 3.48 212 3.56 271 3.61
36 3.12 95 3.37 154 3.48 213 3.56 272 3.61
37 3.13 96 3.37 155 3.49 214 3.56 273 3.61
38 3.13 97 3.38 156 3.49 215 3.56 274 3.61
39 3.14 98 3.38 157 3.49 216 3.56 275 3.61
40 3.15 99 3.38 158 3.49 217 3.56 276 3.61
41 3.15 100 3.38 159 3.49 218 3.56 277 3.61
42 3.16 101 3.39 160 3.49 219 3.56 278 3.61
43 3.17 102 3.39 161 3.50 220 3.56 279 3.61
44 3.17 103 3.39 162 3.50 221 3.57 280 3.62
45 3.18 104 3.39 163 3.50 222 3.57 281 3.62
46 3.18 105 3.39 164 3.50 223 3.57 282 3.62
47 3.19 106 3.40 165 3.50 224 3.57 283 3.62
48 3.20 107 3.40 166 3.50 225 3.57 284 3.62
49 3.20 108 3.40 167 3.50 226 3.57 285 3.62
50 3.21 109 3.40 168 3.50 227 3.57 286 3.62
51 3.21 110 3.41 169 3.50 228 3.57 287 3.62
52 3.22 111 3.41 170 3.51 229 3.57 288 3.62
53 3.22 112 3.41 171 3.51 230 3.57 289 3.62
54 3.23 113 3.41 172 3.51 231 3.57 290 3.62
55 3.23 114 3.41 173 3.51 232 3.58 291 3.62
56 3.24 115 3.41 174 3.51 233 3.58 292 3.62
57 3.24 116 3.42 175 3.51 234 3.58 293 3.62
58 3.24 117 3.42 176 3.52 235 3.58
59 3.25 118 3.42 177 3.52 236 3.58
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Panel D: Regression Discontinuity Designs

#Outcomes t #Outcomes t #Outcomes t #Outcomes t #Outcomes t

1 1.96 60 3.26 119 3.43 178 3.52 237 3.59
2 2.19 61 3.26 120 3.43 179 3.52 238 3.59
3 2.34 62 3.27 121 3.43 180 3.52 239 3.59
4 2.44 63 3.27 122 3.44 181 3.52 240 3.59
5 2.52 64 3.27 123 3.44 182 3.53 241 3.59
6 2.58 65 3.28 124 3.44 183 3.53 242 3.59
7 2.63 66 3.28 125 3.44 184 3.53 243 3.59
8 2.68 67 3.29 126 3.44 185 3.53 244 3.59
9 2.71 68 3.29 127 3.45 186 3.53 245 3.60
10 2.75 69 3.29 128 3.45 187 3.53 246 3.60
11 2.78 70 3.30 129 3.45 188 3.53 247 3.60
12 2.81 71 3.30 130 3.45 189 3.53 248 3.60
13 2.83 72 3.30 131 3.45 190 3.54 249 3.60
14 2.85 73 3.31 132 3.46 191 3.54 250 3.60
15 2.87 74 3.31 133 3.46 192 3.54 251 3.60
16 2.89 75 3.31 134 3.46 193 3.54 252 3.60
17 2.91 76 3.32 135 3.46 194 3.54 253 3.60
18 2.92 77 3.32 136 3.46 195 3.54 254 3.60
19 2.94 78 3.32 137 3.47 196 3.54 255 3.60
20 2.96 79 3.33 138 3.47 197 3.54 256 3.61
21 2.97 80 3.33 139 3.47 198 3.55 257 3.61
22 2.98 81 3.33 140 3.47 199 3.55 258 3.61
23 2.99 82 3.34 141 3.47 200 3.55 259 3.61
24 3.01 83 3.34 142 3.47 201 3.55 260 3.61
25 3.02 84 3.34 143 3.47 202 3.55 261 3.61
26 3.03 85 3.34 144 3.48 203 3.55 262 3.61
27 3.04 86 3.35 145 3.48 204 3.55 263 3.61
28 3.05 87 3.35 146 3.48 205 3.55 264 3.61
29 3.06 88 3.35 147 3.48 206 3.56 265 3.61
30 3.07 89 3.36 148 3.48 207 3.56 266 3.62
31 3.08 90 3.36 149 3.48 208 3.56 267 3.62
32 3.09 91 3.36 150 3.49 209 3.56 268 3.62
33 3.10 92 3.36 151 3.49 210 3.56 269 3.62
34 3.10 93 3.37 152 3.49 211 3.56 270 3.62
35 3.11 94 3.37 153 3.49 212 3.56 271 3.62
36 3.12 95 3.37 154 3.49 213 3.56 272 3.62
37 3.13 96 3.37 155 3.49 214 3.56 273 3.62
38 3.13 97 3.38 156 3.49 215 3.56 274 3.62
39 3.14 98 3.38 157 3.49 216 3.57 275 3.62
40 3.15 99 3.38 158 3.50 217 3.57 276 3.62
41 3.15 100 3.39 159 3.50 218 3.57 277 3.62
42 3.16 101 3.39 160 3.50 219 3.57 278 3.62
43 3.17 102 3.39 161 3.50 220 3.57 279 3.63
44 3.17 103 3.39 162 3.50 221 3.57 280 3.63
45 3.18 104 3.39 163 3.50 222 3.57 281 3.63
46 3.19 105 3.40 164 3.50 223 3.57 282 3.63
47 3.19 106 3.40 165 3.51 224 3.57 283 3.63
48 3.20 107 3.40 166 3.51 225 3.58 284 3.63
49 3.20 108 3.40 167 3.51 226 3.58 285 3.63
50 3.21 109 3.41 168 3.51 227 3.58 286 3.63
51 3.21 110 3.41 169 3.51 228 3.58 287 3.63
52 3.22 111 3.41 170 3.51 229 3.58 288 3.63
53 3.22 112 3.41 171 3.51 230 3.58 289 3.63
54 3.23 113 3.42 172 3.51 231 3.58 290 3.64
55 3.24 114 3.42 173 3.52 232 3.58 291 3.64
56 3.24 115 3.42 174 3.52 233 3.58 292 3.64
57 3.24 116 3.42 175 3.52 234 3.58 293 3.64
58 3.25 117 3.43 176 3.52 235 3.59
59 3.25 118 3.43 177 3.52 236 3.59
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